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Long-Time Behavior of Navier—Stokes Flow on a
Two-Dimensional Torus Excited by an External
Sinusoidal Force

Zhi-Min Chen' and W. G. Price’
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In this paper we study the Navier-Stokes flow on the two-dimensional torus
S'xS! excited by the external force (k2sinky,0) and find the long-time
behavior for the flow starting from some states, where S'= [0, 2z](mod 27).
Especially for the case k =2, it follows from an analysis and computation that
the Navier-Stokes flow with the initial state cos(mx + ny) or sin(mx + ny) will
likely evolve through at most one step bifurcation to either a steady-state
solution or a time-dependent periodic solution for any Reynolds number and
integers m and n.
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1. INTRODUCTION

Let k> 2 be a positive integer and T the two-dimensional torus S'x S,
with S§' the unit circle [0, 27)(mod 27). We consider an incompressible
viscous fluid motion on T sinusoidally excited by an external body force
(k?*sin ky, 0).

The dynamical behavior of this fluid flow system with k& a positive
integer defined in terms of velocity u = (u,, u,) and pressure p is described
by the following Navier-Stokes equations:
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O,u— Au+ Au-Vu+Vp = (k?sin ky, 0)
Vou=0

(1)
u(t, 0, yy=u(1, 2z, y), vel[0,2r), t=20

u(t, x,0) =u(t, x, 2n), xe[0,2n), t=0

Here 4 and V denote the Laplacian and gradient operators, respectively,
d,=0/0,, and A>0 is the Reynolds number defining the viscous fluid
motion.

To ensure the uniqueness of the solution to Eq. (1), we require the
additional condition

j u(x, y)ydxdy=0 (2)
TI

The problem defined by Eqgs. (1) and (2) was first formulated by
Kolmogorov''’ and is also referred to as the Kolmogorov problem (see, for
example, Okamoto and Shoji''®').

This fluid motion with k=1 and 1> 0 is simple, since Meshalkin and
Sinai''”’ obtained the flow described by the equations

O,u—Au+u-Vu+Vp=2(sin ky, 0)

(3)
V-u=0

when k =1 associated with Eq. (2) on T2 is attracted by a single steady-
state solution for all real 1. This giobal stability result was also re-proved
by Marchioro.''*

Bifurcation analysis on the stationary Navier—Stokes flow represented
by the equations

—vAu+u-Vu+Vp=y(sin y, 0)
Vou=0

(4)

on the torus (S'/a)x S' with 0 <a <1 was examined by Iudovich.'™® It is
interesting to note that Okamoto and Shoji''"® provided numerical
experiments concluding the absence of secondary step bifurcations in
Eqs. (4) by computing an #-mode truncation model for Eqs. (4) with n>
200. Such a result is also partially confirmed by the mathematical analysis
and numerical experiments herein.

For lower bound estimates for the Hausdorff dimension of the global
attractors described by the above equations, see ref 2. Recently, Liu''?
gave an extended study on the estimates with respect to Egs. (2)—(3) by
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developing the technique of Babin and Vishik,'”’ Iudovich,"® and
Meshalkin and Sinai.!'”’ For the numerical analysis of a Navier—Stokes
flow in a bounded domain attracted by a steady state, see refs. 4 and 20.
Franceschini et al.*' and Jolly'”’ made computational studies on the long-
time behavior of the solutions to Eqgs. (1)-(2) with more general forcing
terms.

Here we consider the dynamical problem from a more analytical view-
point.

For convenience of analysis, we use the stream function ¥ with
vorticity 4y =0, .u, — 0 .u, and rewrite Egs. (1)—(2) in the form

O — Ay +A 4718, 8. A~ d,A) = —kcos ky (5)

associated with the modified condition
I Ylx, y)dxdy=0 )
T.

ensuring uniqueness of solution. Thus Egs. (5)-(6) define an infinite-dimen-
sional dynamical system in the Hilbert space

H?= {l//eLZ(TZ; R) ' Ape LATLR), | Yix, ) dx dy=0}
72
associated with the norm

1an= (] 1avraxar)

We shall use the concepts with respect to dynamical systems as defined in
ref. 7.
By Fourier expansion the solution (¢, x, 3) can be written as

s

Y(tx y)= Y Eftcosmy+ Y (4, (1) cos(mx +ny)

n=1 m=1ln= -

+{,, (1) sin(mx +ny))

Given a dynamical system starting from an initial state, it is not easy
to predict if the system will evolve through a sequence of bifurcations to a
steady state or a periodic state or even a fully chaotic state. However, as
far as Eqs. (5)-(6) are concerned, it is possible to predict the long-time
behavior of this dynamical system starting from some interesting initial
states.
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In this study, by analysis and computation we discuss the long-time
behavior for the solutions to Egs. (5)—(6) with initial states in either of the
following flow invariance subspaces:

s

=y &, cos nky + Y Nor cos(mlx+nky)}

n=1 m=l.n=— =

H%k={lﬁEH2

n

ﬁﬁk={|//eH2

n=1
+ Y W n SIN(2Imx — Ix + 2nky)
m=\l.n= - u

+ Z C:n. n cos( 2mlix + 2’1/{)))}

m=Iln=—x

where />0 is an integer. We find that every solution to Egs. (5)—(6) with
initial state in H;, (resp. H7,) will likely go through at most one step
pitchfork bifurcation and evolve toward a steady-state solution in H;,
(resp. A7 )).

Additionally, in order to give more evidence for the long-time
behavior of other solutions to Egs. (5)—(6), we take k =2 as an example to
study the fluid motion in either of the following flow invariance subspaces:

H7, ={¢EH ‘xp Z &, cos 2ny

n=1
+ Z B 0 COS(2mix — Ix + 2ny + y)
m=l.n= -

+ Y o COS(2mix + 2ny )}

m=1l,n=—

A3, ={l/JEH Y= Z &, cos 2ny

n=1

7

+ Y Nor. n SIN(2mlx — Ix + 2ny + p)

m=l.n=—u
s

+ Y Lo n cOS(2mix + Zny)}

m=l.n= ~v

for integer /> 0. Our investigation shows that the attractor of Egs. (5)-(6)
with k=2 reduced in either #;, or #;, for [#1 coincides with the
steady-state solution —(1/2) cos 2y. Moreover, when the Reynolds number
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varies, —(1/2) cos 2y loses stability in #°? , (resp. #7 ,), and bifurcates into
a time-dependent periodic solution which is stable in #7 , (resp. #2 ,).

Consequently, for any Reynolds number 4, integers # and n, and for
any solution ¥(z,x, y) to (5)-(6) with k=2 starting from either
(0, x, y) =cos(mx + ny) or ¥(0, x, y) =sin(mx +ny) in H? it seems that
Y(t, x, y) approaches either a steady-state solution or a time-dependent
periodic solution.

In another study, we shall, however, find that Eqs. (5)—(6) with k=3
have a time-dependent periodic solution which undergoes further step
bifurcations other than pitchfork and Hopf bifurcations as the Reynolds
number 4 increases.

The outline of this paper is as follows: In Section 2, we investigate
pitchfork bifurcation for Egs. (5)—~(6) reduced in H ,ZA In Section 3, we
provide a four-mode truncation model for Egs. (5)~(6) reduced in H;, and
show that, for this truncated system, every bifurcated equilibrium point is
always stable irrespective of the magnitude of the Reynolds number. In Sec-
tion 4, to support this stable criterion, we additionally introduce a 17-mode
truncation model for Egs. (5)-(6) reduced in H;,. Numerical experiments
on this model with k=2 and 3 corroborates the findings in Sections 3 and
4. In Section 5, we examine time-dependent periodic solutions of Egs.
(5)-(6) with k=2 reduced in # fz. Finally, in Section 6, we present some
remarks showing that the results in Sections 3-5 remain valid whenever
H?}, and #7; , are respectively replaced by A7, and J#7,.

2. PITCHFORK BIFURCATION

In this section we study pitchfork bifurcation for Eqs. (5)—(6) in H ,3 -
Let us first note that H;, > H3, , and every subspace H;, is flow
invariant with respect to Eqs. (5)—(6).

Lemma 2.1. Let />0 and 1>0. Then for every initial function
Yyoe H; ., Egs. (5)—(6) admit a unique global solution

Y e ([0, o) Hi,)
Proof. For every j= 1, it is not difficult to verify that
470y, 0.4y, — 0.y, 0.4y, e H]
with
J

J
l//_i = Z én cos ”k,V + Z ’7111, " COS( ml_\' + ’1ky)

n=1 m=1ln=—j



306 Chen and Price

By an elementary manipulation, the desired assertion follows from the
Galerkin approximation procedure (see, for example, ref. 19). The proof is
complete.

With the use of Lemma 2.1, we rewrite Eqgs. (5)—(6) in the form of a
functional ordinary differential equation

d ,
g‘f_dwsm(wpo, W, ) =Wt - Ve H, (7)

representing an infinite-dimensional dynamical system, where
B i(§) =240, 0,49 — 0. 8,4%) +k cos ky

since the pitchfork bifurcation problem for this system is largely based on
the spectral behavior of the operator

— A+ A = —A+ A4 "sinky(4 +k*) D,

the linearized operator of the stationary Navier-Stokes equation
—4y + B, (Y)=0 at the steady-state solution —(1/k)cosky, or the
Fréchet derivative of the operator — Ay + B, ;{{) at —(1/k) cos ky.

Let us begin with the investigation of the spectral behavior of the
operator —4 + A4, in H7 . This spectral problem was partially studied in
H? by Iudovich® and later by Liu''® in a similar way. However, this
problem is now investigated in H7 , together with its subspaces. It is con-
venient to prove the following lemmas in detail by an approach developed
from the technique proposed in refs. 8, 13, and 17. Also see refs. 4 and 20
for the study of the resolvent estimates of the linearized Navier-Stokes
operator in a general bounded domain.

Lemma 2.2. For k =2, there exist exactly k — [ real functions and
k —1 real numbers

plA)< - <pp_(2) with A>0 and O</l,< .- <i,_,
satisfying

2k +17)?
k2_[2

dimker(—4 + 14, —p) <1 in H{

, d
pl()n,/)=0. <l7, d‘_zp[(l)<0

for /=1,.,k—1 and pe{peC|Rep<k?}. This equality holds if and
only if p=p,(4).
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Proof. First, to study this spectral problem, we can suppose, without
loss of generality, that H? is a complex space. For every />0 we see that

b

y= > &, cos(lx+ mky)}

m= — 7

{t//eHz

is an invariant subspace with respect to the operator —A+ 44,; the
spectral problem

— Ay +AAy —pY =0

can be reduced in this subspace instead of in H7 ,. Thus by an elementary
manipulation, this spectral problem with an eigenfunction

t// = Z é/, m COS( l.‘{ + I"ky) in f]3 (8)
becomes
A 0 Crm it A%
. . _ . ] B o
2ﬁl. n 2ﬁ, m +(ﬂ/ m ,0) é/. " (9)

for any integer m, where
Bim=0+mk* and  «,,=l1"+m’k’—k?) (10)

It is not difficult to find that &, ,,#0 and &, ,, =0 for any integers /> 1 and
n1. This allows us to define, for m>0 and /=1,

&t 6/, m

£
X =160 m—1

Xy —m é/. —m

&y 4”15/. I —m

(11)

and Yi—m=

Yiom=

In particular, we define 1/y, ,, =0 since «, , =0. Thus we see that Eq. (9)
is equivalent to the following system of algebraic equations:

2o P Proy s when 12k

A0
2(ﬂ/m_p)ﬁl 1
. i I f 2 1
Aa/. m + Yiim Viom s or m
z(ﬁ/.m_p)ﬁl.m 1

A +yl.mfl = for m< — 1
%im Yi.m
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Since Y € H? implies the boundedness of y, ., with respect to m, we have
Y. +m— 0 as m— + oo, and hence

—1

= - —-m= ’ m>l
Yiom . 2(ﬂl m P) ﬂl. m 1
la!.m 2(ﬁl.m+l_p)ﬂl.m+l+l
'hxl, ma 1 (12)
and so
z(ﬂ/.l—P)ﬂu: —1 1=k
Awy 2(5/.2"P)ﬂl.z+ 1 ’
Aw 2(,31,3—P)ﬂl.3+l
A, (13)
(Bro—p) Bro —1
- —= R I#+k
A% g 2(ﬂ/.|“/’)ﬂ/.1+ 1
/1“1,1 z(ﬁl,z_P)ﬁl.z_i_l
/Ithz ‘. (14)

It i1s readily seen that Eqs. (13)—(14) are not true whenever />k and
Re p <4. Therefore it is sufficient to examine Eq. (14) with /=1,.., k—1.

Second, to show the lack of a nonreal eigenvalue p, we suppose, on
the contrary, Im p #0. Then, for m >0,

2 m "
arg <‘%>' = larg(B;.,— p)l
> arg <2()Blm~;';_p) ﬁl,n1+ l>'
Lm+1

This together with Eq. (14) yields

(Bio—p)Bio
arg( Aoy o )

larg(B, 0 —p)l=

<

arg (2(ﬂl. 1= P) B

A,

)l<|arg<ﬁw—p>|

which leads to a contradiction.
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Third, to give the functions p (1), we define, for m>1,

_2ﬁ/. oBiom1(Bro—PNBiow—1—p)

2
j’ a, Oa/. 2m—1

_ 2“'/. Oﬂlv Zm( ﬂl. 2m p)
ﬂl, 0%, Zlu(ﬂ/, [ /7)

Multiplying Eq. (14) by A, o/[(B1.0—p) Bi.o] yields

&om— I(l7 '1’ p) =

g2m(1’ p) =

1
1=

gl(lv'lvp)'l" 1

gZ(L /7) +
gl 4 p)+
Denoting the right-hand side by f(/, 4, p) and observing that
a/)glm—l(l’A”p)<0<apg2m(1’p) fOl’ p<ﬂl.0
we obtain
a/l./(l’l’p)>0 for p<ﬁ/.0 (15)
Hence the observation

lim f(I, 1, p)=co, lim f(, A p)=0

P7pLo p— —
implies the uniqueness and existence of p =p,(1) < B, , satisfying

1=7( 2 p/(2}) (16)

For such an eigenvalue p,, it follows from Eq. (11) that

Vi am V%0
51’. im_c

$io=2¢ s mz1

al. +m

where ¢ € R is an arbitrary constant; that is, the eigenfunctions with respect
to p, form a one-dimensional space.
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Finally, it remains to verify the existence of A, and the monotonicity
of p, and 2,. From the inequality 0, g.,, _ (/, 4, p) <0 it follows that

0, /1,2, p)>0 for p<pio (17)
This together with

lim f(1,40)=0 and  lim f(/,10)=co0

A= 0 h—~ L
implies that there is a unique positive number 1, such that 1= f{/, i, 0),

which also gives A] >2(k* +1?)*/(k” —[?), since f(/, 2,,0) < 1/g,(/, 4,,0).
To prove the monotonicity of 4, and p,, we note that, for 1 </+1 <k,

oI+ LA p)>g0 (LAp) g+ 14 p)<g(l 4 p)
and hence f(/+1, 4, p) < f(/, 4, p), which shows that
=LA =1+, 4,,.00<f1L4,,,,0)
V=74 p Ay =JU+ 1,2, p,  (A)) <UL A, pry (D))
Consequently, by Egs. (15) and (17), we have
A<y and plAY<p (L) whenever 1</<k-2
Furthermore, Eq. (16) gives

' dp (2
=@ﬂL&mM»+@ﬂLLmMNJ£)

_ it 2 piA)

0 di

which together with Eqs. (15) and (17) implies (d/dA) p,(1) <0. The proof
is complete.

The spectral problem in Lemma 2.2 may also be considered in H7; ,
the subspaces of H7,. In fact, the proof of Lemma 2.2 provides the
following result:

Corollary 2.1. For iI=1,.,k—1, let n=[k/I1 when [k/I] <k/l,
and let n=T[k/I1—1 when [k/I1=k/l, where [k/!] denotes the integer part
of k/I. Suppose that p,(1) with i=/ 2/,.., nl are defined as in Lemma 2.2.
Then, for A>0and pe{peC|Rep<k?},

dimker(—A4+ 24, —p)< 1 in H;,

and the equality holds if and only if g =p,(A).
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Additionally, the first step in the proof of Lemma 2.2 implies the
following result with respect to H;, for either /=0 or />k:

Corollary 2.2. Consider Eq. (7) in the case /=0 or /> k. Then the
steady-state solution —(1/k) cos ky is always stable for all 1> 0.

To obtain a pitchfork bifurcation result, it is necessary to introduce
the following simple estimates.

Lemma 2.3. Let/=1,.,k—1, >0, and X, ; denote the set of the
steady-state solutions of Eq. (7). Then following assertions are valid.

(i) Both 4 '4 and 47 'B, ; are compact and continuous operators
mapping H;, into itself, and

I4-'0 0,49 =0y 0, 4p) =o(l4yl)  for YeH;,
(1) We have
|4yl <2k*m  for yeZ,,
Proof. (i) We see, for ye Hj,,
14¥ 47" 4g)l| = |(—4) " sin ky 0 (4 + k) ||

< |Isin ky (4¢ + k)|
<Ayl + k2 Iyl < (1 +&7) |4y

On the other hand, applying the Sobolev imbedding theorem (see, for
example, ref. 6) and the Holder inequality, we obtain

1

A

454 <A_lBk. ) +%cos ky>”

= 14%4470,4 8,49 — 0.4 8,49

= =) (040, 49— 3,04 4P
<U=4) 4@ )+ I(=2) = (@, 2P|
<10, APl x+ 10,3 4P 1)
<10, 9l 4+ 10,91 4) 14
<e, lay)?

822186 1-2-21
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where ¢, and ¢, are constants. The continuity of 4~ '4 and 4 ~'B; is now
obvious. By the Kondrachov theorem (see, for example, ref. 6) we see that
the norms |4%*.| and ||4°*.| are compact with respect to the norm
|4 -, and thus assertion (i) is valid.

(ii) Multiplying the stationary equation with respect to Eq. (7) by
A%y and integrating over the torus 72, we obtain, after integration by
parts, immediately the desired estimate

Ayl < |VAY | < |lk? cos ky|| < 2k*n for yeZ,,

The proof is complete.
The main result of this section reads as follows:

Theorem 2.1. Let 4,,..,4,_, be defined as given in Lemma 2.2,
and let ¢, v) = the steady-state solution —(1/k) cos ky. Then the equation
(djdit)y — Ay + B, (¥)=0 in H?,, Eq. (7), admits k—1 supercritical
pitchfork bifurcation points (4,, @yh-.. (A 1. @4); In other words, there
exists a small number J >0 such that, for every /=1,..k—1 and every
A <A< ;4 9, this equation has two stable equilibrium solutions , , and
¢, . satisfying ¥, ; = ¢, ;,= ¢,. Moreover, this equation has no other bifur-
cation points along the half-line {(1, ¢,) | A>0}.

As a consequence of this theorem and its proof, we can obtain k — 1
bifurcation points of the stationary system — A4y + B, ,(y)=0in H; , by
applying Krasnosel'skii’s Theorem."'”’ But to deduce the pitchfork bifurca-
tion of Eq. (7)., we will provide a detailed proof. This is achieved by using
the Larey-Schauder degree method of studying nonuniqueness problems
(see, for example, refs. 10 and 19).

Proof. 1n order to use the Larey-Schauder degree method in the
space H; ., let us adopt the following notation:

Ae=de 1 +1,  r=2km So=(A 44,02 I=1. k-1
] )
F,-‘(lp)=lﬁ—lA"Alﬂ—A‘lB,‘._,l(l//)—ECOSky, yeH;,
O, ={YeH;, |ldy| <s)
Q, .={beH] le<|ay| <r}, O<e<r

where 4, 1s defined in Lemma 2.2,

Now the equilibrium or steady-state solutions of Eq. (7) become the
solutions of the equation F;() =0, which are to be found in the domain
Q, , . in the following.
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By Lemma 2.3, the choice of r implies

0,,> U 2

A€ A i+ do]

Using Corollary 2.1, we see that for every 0<d <, there is a small
£=¢(d) so that the operator F;(i) =0 has only the trivial solution 0 in the
ball @, ,, for A, + 6 <A <A4,+d,. In view of Lemma 2.3, 4" '4 and 4~ 'B,
are compact in H;,. Hence, the following Larey-Schauder degrees of F,
are well defined over @, ,, @, ., and Q, , . with respect to 0:

deg(F,,©,,,0) for 0<i
deg(F,, @, ,,0), deg(F,, 2, .,0) for A, +d<i< i, +4d,

On the other hand, for 0 <l<4,+4d,, if o,(4) is the eigenvalue of
I—24'Ain H},, or

A . )
Alﬁ-}-m/ﬂ//:o mn H;,
then Corollary 2.1 gives
ai(Ay=1—1/4, for 0<A<i,+d, (18)

This shows, in conjunction with Corollary 2.1, that
deg(F,,0,,,0)=1, O<i<i,
and so
deg(F,,0,,,0)=1, O0<d<i,+6,

since the choice of r implies that the problem F,(¢/)=0 has no solutions
outside the ball @, , for 0 <1 < 4,+ d,. Applying Corollary 2.1, Lemma 2.3,
and Eq. (18), we deduce that

deg(F,, 0,,,0)=deg(/—147'4,0,,.0)= —1, L+8<A<id;+4d,
and
deg(F)J Ql. roes 0) =deg(F}.s @l. re O) #—deg(F),* @l. By O) =2

for 4,+d <A< 4i,+3d,. This shows that F,(y)=0 has two solutions in the
domain £, , ,.
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Additionally, by Corollary 2.1, the system (d/dt) ¢ —AF,(y)=0 in
H;, is globally stable and has a unique equilibrium solution 0 when
0< A< 4,, and the trivial equilibrium solution 0 possesses a one-dimen-
sional unstable manifold when A, <A <4,,,. Hence 0 can only bifurcate
two nontrivial equilibrium solutions, which are stable because of con-
tinuity. This implies that (d/dt) y — 4F,(¢)=0 in H, admits exactly two
nontrivial stable equilibrium solutions for 4,4+ <A< 4,4+ 2d, provided
that J > 0 is sufficiently small. The proof is complete.

3. FOUR-MODE TRUNCATION SCHEME

The proof of Theorem 2.1 provides the long-time behavior of the
infinite-dimensional dynamical system described by

(didt)yy— Ay + B (y)=0 {19)

in H;, for I=1,..,k—1 when 1 is near A,. In order to derive more infor-
mation for all A>0, we truncate Eq. (19) in H7, into k—1 systems of
ordinary differential equations.

The analysis of Section 2 allows a suitable subspace to be defined on
which Eq. (19) in H7 , can be projected. Note that the solution of Eq. (19)
in H; , is of the form

> k—1 o
y=3 f,,,(t)cosmky+< Y oY + Z Z >E, 1) cos(Ix + mky)

m=1 I=1 m=—x =k m=—u

Lemma 2.2 shows that the only term contributing to the spectral problem
of the operator —A4 + A4, is the second one on the right-hand side of this
equation. It follows from Lemma 2.2 together with Egs. (8), (11), and (12)
that —4+ 24, in H{, has exactly k—1 eigenvalues p,(A).... p,_(4)
associated with k£ — 1 eigenfunctions

z &, cos{lx + mky), I=1,., k-1

m= — %
where
Vw1 %0

To=1, Ctam= — mz1
al. o

From Egs. (10) and (12) we see that

B
2’ K17 "% g

B 2B =P A)) BBy —pA)) B, l,

Ié/v wm l <

+m=1
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which vanishes quickly as |m| increases. Therefore,
span{cos(/x — ky), cos Ix, cos(Ix + ky)}, I=1,.. k=1

are key subspaces of H7 , to study the spectral properties of the operator
— 4 + AA,,. Additionally, noting that the fluid motion described by Eq. (19)
is excited by the spatial force —k cos ky, we thus choose

span{cos ky, cos(/x — ky), cos Ix, cos(Ix + ky)}, I=1,..k—1 (20)

as the desired the subspaces of H{ .. Equation (19) in H; , is projected
onto these spaces as follows:

¢, =cos ky, ¢, =cos(lx—ky), ¢ =cos Ix, ¢,=cos(lx+ky)
Y =X\(1)d, +Xs(1) ¢+ Xs(1) @3+ X,y(1) ¢4

for every /=1,..,k—1; the truncation of all the terms of Eq. (19)
orthogonal to the space defined in Eq. (20) gives the following result:

(al‘p —Al// +1A_I(a|¢ a\AW —a\lp a\A‘//)a ¢n) =(_k Ccos ky’ ¢u)

forn=1, 2, 3, 4, where (¢, @) denotes the inner product | » ¢¢ dx dy. After
algebraic manipulation, this produces the set of coupled equations

%wlx, +'12£X3(X2—X4)= —k
d;2+(13+k3)X:—%X|X3=0

";f-‘+12x3—}%x,<X3—X4)=0
d—[’l‘;—*+(/2+kl)x4+%X.Xg=0

from which we see that

X, + X, s s
(('d—j-”+(l—+k-)(Xz+X4)=O
This shows that X,(¢)+ X5(¢+) decay exponentially, and by letting
X,= — X,, we obtain the following coupled equations describing a three-
dimensional dynamical system:
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d;X'_l+k2X|+),lkX3X2= —k

dt
dX, . . Mel(k — [?)
(P Xy — 5= X, X3 =0 2
a PR Xy N (2h)
dx
T;‘+12X3—ukx,xz=o

for I=1,.., k—1. As deduced in Section 2, we denote by ¢’ the dynamical
system such that ¢'(X(0))=X(r)=(X (1), X5(1), X5(?)), and denote by
Dg'(X(0)) the Fréchet derivative of the operator ¢’ with respect to the
initial data X(0). It follows from Eq. (21) that

(d/dt) De'(X(0)) h* = M('(X(0))) De'(X(0)) h*
Do X(0)) ht=h*,  h=(h,, h,, h;)eR®

where
'_kl —‘/q,lkXB _A[sz
Mel(k>—13) 5 o Ak =17
MX)=| T X, —(P4k) T
K=\ Zrs © ~EH0) SerE o
AklX, AklX, =1’
In particular, the matrix
—k? 0 0
2 2 /U(kz_lz)
—1 — —]2_ _
M((—1/k,0,0)) 0 -k T 1)
0 —Al =’

has eigenvalues

oF= —k?
pp o 2T K 2P0 - ) 4+ k7))
- 2
e il U a5 ] e 1
I =

2
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On setting A} =[2(k>+1?)*/(k*—1?)]'?, we find that ¢}, a5 <0 for all
A>0 and
<0 when A<Af
pF(A)=<=0 when A=AF
>0 when A>Af

It is easy to verify that Eq.
equilibrium points

A7

kA’

Y=(Y|» Yza Y3)=<

Af

Z=(ZI’ZZ’ZJ)=<—H’

By denoting p(p)

(21) with 1> 1} has exactly two other

1 AF

/{ 172 2
z( 1) "ﬂzrl) )
1/2 * 1/2
SCRRICRIY
FRVY: 7

=det(p] — M(Z)) the characteristic polynomial of the

matrix M at the nontrivial equilibrium point Z, we obtain, for 1 >4},

plp)=det(pl — M(Y))
=(k2+p)((12+k2+p)(12

Akl — 1P)(1?

(k)2 (k2 = 17)
20k + 12)

(AkD)? (k> —

+p)—

Y%)

)

+,1le3< T

+ k1Y, (

2k + )

=+ pN P+ K+ p)*+p)—

Akl
A¥

(G

+ (kI (K> +17+p) Y3

) (K24 13)(1*+p

=(k2+p) P+ kT +pN 1P+

A
L2 122 R 2122 g [ L
+ k(2171 +p)<i,* 1>+-kl(k +I)</1* 1

(Akl)? (k'

1?)
Y, + Y, Y,

2k +17)

Y Y.+ (7 +k° +p))le7>

G
AF

) (24 YK 4 p) ¥

Akl
) Y3 +2< ) (k*+13) AKlY, Y, Y,

p)+ 1P+ 1)K+ p)

A

)

!
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A
+k312(k2+12+p)<,1—;—1>
!

l 2 2 212,12 2 )"
=p3+2(k2+/2)p2+z/—*-k2(k'+21‘)P+4k”1‘(k'+l') (/1*—1>
] !
Now Y and Z can only become unstable equilibrium points when p(p)

has a root on the imaginary axis {pe C|Rep=0}, which, however,
contradicts the observation

}I.
kl(k2+212)>4k212(k2+12)(F—1>>0, A>Af
!

A
AF

20k +17%)

Thus, we find that the eigenvalues of the matrices M(Y) and M(Z) remain
in the half complex plane {pe C | Re p <0} for all A> A}. This derivation
allows the following summary:

Theorem 3.1. Equation (21) with /=1,.., kK — 1 possesses a unique
bifurcation point

(AF (=1/k,0,0)),  AF=[20°+k*) (k> —1*)]"?

and this is a pitchfork bifurcation point. The global attractor of Eq. (21)
is the single point {(—1/k,0,0)} when A<A}, and consists of two
heteroclinic orbits joined at the saddle equilibrium point ( —1/k, 0, 0) when
A>AF.

Based on this theorem, now we give phase portraits for the global
attractors of Eq. (21) for k=2, 3 as examples.

Rewriting Eq. (21) in the form dX/dt = f, . AX), X=(X |, X5, X3), we
can discretize Eq. (21) by the four-step Adams-Bashforth method (see, for
example, ref. 11) to obtain

h
24

+ 371k X 22) =Y X 23))

Xn+l=xu+ (Ssﬁ.k.k(xn)_ng}_k‘.i(xu—l)

with step length h=0.0005, and (/ k)=(1,2), (1,3), and (2,3). To
illustrate the typical solutions to these equations, we shall, for demonstra-
tion, take a Reynolds number A =50 or 1=200, and take the two initial
data

X*=(—1/k, 0, £0.001)
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Fig. 1. Phase portraits on the (X;. X,) plane for the global attractor or the one-dimensional
unstable manilold of the saddle point { —1/2, 0. 0) for Eq. (21) with k=2 and /= I. Here {a)
4=350, (b} 2=200.

The numerical experiment in the form of phase portraits on the
{X:, X5) plane is displayed in Fig. | for k=2 and in Fig. 2 for k=3 X*
and X~ are very close to the unstable manifold of the equilibrium
point ( —1/k, 0,0), and so the two orbits produced by X* and X~ can
be regarded as the two heteroclinic orbits connected at the point
(—1/k, 0,0). From Theorem 3.1 it follows that the unstable manifold of
(—1/k, 0, 0) consisting of these two heteroclinic orbits joined at the saddle

°~25 3 o'z E
N \ . \\ Tl
2] ~ ~. . ot \\’l T. ﬂ(\
> \'X A
-0.25
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(a) (b)
015 0157 _
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Fig. 2. Phase portraits on the ( X5, X,) plane for the global attractor or the one-dimensional
unstable manifold of the saddle point (—1/2.0.0) of Eq. (21} with A=3. Here (a)

(1.2r=11,50), (b) (/. 2)=(1.200), (¢) () 2)=1(2,50), (d) (/. A)=(2.,200).
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point X, is the global attractor of Eq. (21). From Theorem 3.1 or from the
above numerical experiment it is readily seen that the topological structure
of the attractor remains unchanged as A increases.

4. 17-MODE TRUNCATION SCHEME

To support the stable results deduced in the previous section, we shall
provide a 17-mode truncation model for Eq. (19) in H;, and provide
numerical experiments for this model for k=2, 3 showing corroborative
evidence to the findings of Section 3. Before computation, let us analyze
this new system to strengthen the credence of the numerical results. It is
useful to note that every solution of Eq. (19) in H ,2 . 1s of the form

Y= i ¢,(t) cos kny + i i N, (1) cOS(mix + kny)

n=1 m=1l n=—a

This Navier-Stokes flow is excited by the spatial force —k cos ky, and the
pitchfork bifurcation stems from the term > __ 5, , cos(Ix + kny}, which
then influences the terms >.7_ __ #, ,cos(2lx +kny) and X7 &, cos kny.
Furthermore, the modes cos(/x + kny) and cos(2/x + kny) have limited
symmetry with the modes cos(/x —kny) and cos(2/x — kny), respectively,
and by numerical experiments it can be shown that £, #, ,, and , _, are
of order 107"~!, and that 7, , and #, _, are of order 107" "2 for n>0.
For these reasons, this Navier-Stokes flow can be adequately
approximated by a function in the form

N N
Y &t coskny+ Y &, (t)cos(lx +kny)

n=1 n=-—N

N
+ Y &, (1) cos(2ix + kny) (22)

n=—N

for N>1. Here, for simplification, we take N=3. By the previous
reasoning, Eq. (19) in H;, is projected onto the 17-dimensional space

11, . = span{cos kny, cos(Ix + mky), cos(2lx + mky) | n=1, 2, 3,

m=—3,.,3}
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Navier-Stokes flow is truncated to the following form:

3 10
()= Y X(t)coskjy+ Y. X,(t)cos(Ix+k(n—7)y)
j=1 n=4a
17
+ Y X,(1t)cos(2x + k(m—14) p)

m=11

On setting, for 1 €7<3,4<n<10, and 11 <m< 17,
a;=k%%  a,=I>+k*n=T7),  a,=47+k}m—14)*
¢;=sin kjy, ¢, =sin(Ix+k(n—~7) y), m = SIN(20x + k{m — 14) y)
;= cos kjy, V,=coslix+k(n—T) y), Y, =cos(2x + k(m— 14) y)

we have

10
—0.¥ = Zk/X N+ Y kin—7) X1 ¢,

J=1 n=4

17
+ Z k(m - 14) Xm(t) ¢m

m=11

10 t7
a\A"p: Z lanXu(t) ¢n+ Z 2[aln m(t) ¢m

n=4 m=1t

10 17
~0¥ =3 IX(0)¢.+ Y 2X,(1)¢,
n=4

mr= 1

3 1]
aldlp: Z kja/X/(t) ¢/+ Z k(n-7)a,,X,,(t)¢,,

i=1 n=4
17
+ Z k(m— 14 ame( )¢m
m=11
and so, after the necessary manipulations, the nonlinear contribution is
given by

8,0 0,4y — 0¥ 8,4

3 ; 10
= EQ( Z (au n j)XXII -

F=1 2 n=4+j

17
+2 z (am Ay — /) Xme j)l/,

m=11+j
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3 1] 10—
Z 7( Z a;,+,)XXu+/lpn
J=1 =4

10

- Z (a,i_anfj) XfX”‘/lp”>

n=4+j
7 kl(2n —m
+ Z Z ( )((l”, Ay, - ")X an ”l//
m=11 d<u. m—n<gl 2
3 17—
+ Z klj( Z (aj—am-i»j) X/'Xm+jl//m
i=1 m=11}
17
- Z (a/'_ nl~/)XXm/¢m>
m=1l+7
v ki(2n —m
Y Y K, XytE

m=11 4w m—-—n<l0

where E is a term orthogonal to the 17-dimensional space. Equation (19)
in Hj, is thus truncated to the following coupled set of 17 ordinary
differential equations:

0=3 [ (%-svmw)v,axdv,

which on expansion gives

Zd ‘it Y X+ ky,

i=1 i=1

_/ I() 17 a
-7 n u — / X X“ _ /+ 2 Z m m —/ X,,,Xm y ',b,‘
2 ' 4; '

I
||M¢,

n= 4+/ m=1l+j

3kl /0= 0

lj a;—d, . ; a;—a, ;
Z 2 Z - Xan+id/n_ Z X;‘Xn—jd/n
= n=d4 (1,, n=4+; "

ki2n—m)(a,,—
2a

17 )
Ay —n
+ Z Z Xme ul//u
m=1l 4<um—-—n< "

oS e —a,,,
+ Z kb Z '—X/X::1+_jl//;11

i=1 m=11 "
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17
a.—a .
'j m—j
- Z XiXm—jl;bm>

m=11+; (l”,
7 ki2n—m)a,
- Z Z 2 Xm—anlpm
m=1l d<nm—-n<l0 al"

The rewriting of this coupled set of equations in the form

dX
7{=F/.A-./:(x)« X=(X|,---~ X|7) (23)

leads itself to a discretization by the four-step Adams-Bashforth method to
give

h
Xn+| =Xn+ﬁ(55F//\ Z(X;r)_ngl.kA /i(xuul)

+37FIA /Z(XII—Z)_gFI./\'. ).(xnﬁl))

where a step length /1 =0.0002 is again chosen.

Similar to Section 3, now we take (/, k)=(1, 2), (1, 3), and (2, 3} as
examples to display numerical experiments on global attractors of the trun-
cated model in Fig. 3 for k=2 and in Fig. 4 for £ =3 through their phase
portraits on the (X, X,) plane for the Reynolds number A =50 or 4 =200.
As in Section 3, the discretization starts respectively from the two initial data

£ = (—1/k, Xopon Xo» £0.001, Xgoos X17)s X, =0

X * and X~ are very close to the saddle point X, =(—1/k, X>, ..., X ;) with
X, =0, the projection of —(1/k)cos ky on I1,,, but are not in the stable

025¢ ) 026r
(NN | i
of {9 AN ¥ 0 AN i
\\/ ™ \@}} \ )'
i Y
0%%8 0 o8 %55 0 — 08
@ {®)

Fig. 3. Phase portraits on the (X,. X,) plane for the global attractor or the one-dimensional
unstable manifold of X, for the 17-mode truncation model with /=1 and & =2. The two
stable equilibrium points are X", and X, .. Here {a) 2 =50, (b) 2= 200.
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Fig. 4. Phase portraits on the (X5, X;) plane for the two typical heteroclinic orbits joined at
the saddle point X, and ending respectively at the stable equilibrium points X", and X5,
Here (a) (LA, 2)=1(1,3,50), (b) (L k, A)=(1,3,200), (c) (L k, 2)=(2,3,50). (d) (Lk, )=
(2.3, 200).

manifold of X,. We find that the discrete flow from X* (resp. X7)
approaches a stable equilibrium point in 7, ., which denoted by X, (resp.
X 4.

It should be noted that many other discrete orbits with initial data
close to the attractor are examined. They approaches either X", or X .

From Figs. 3 and 4 together with Theorems 2.1 and 3.1 we readily see
that X{, (resp. X&) are the only equilibrium points in I7, , (resp. I1, )
bifurcated from X,. Moreover, there are two pitchfork bifurcation values
A¥ <A¥ for Eq. (23) with (/, k)=(1, 3). The global attractor of the 17-
mode truncation model in 77, ; coincides with X, when 0<A<Af,
contains the two stable equilibrium points Xi°; when Af <A< A#, and
conains the two stable equilibrium points X, and the two saddle points
X having respectively a one-dimensional unstable manifold in 77, ; when
A>A%. From Figs. 3 and 4 we see that the orbits generated by the initial
value X * (resp. X 7 ) are almost the heteroclinic orbits starting from X,, and
ending at X, (resp. X,), and the stability of X*, in IT,, remains
unchanged as 4 increases.

Thus, on the condition that the 17-mode truncation model is a
suitable approximation of Eq. (19) in H;,, we find that the topological
structure of global attractors of Eq. (19) in H;, and Eq. (21) with
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(I, k)=(1,2), (2,3) is the same. Since H3 = H7 ,, from Theorem 2.1 we
see that there are two pitchfork bifurcation values 0 <A, <A,. When
0<A<A,, the global attractor of Eq. (19) in H7 , coincides with the
steady-state solution y,= —(1/3)cos 3y. When A, <A< 4,, ¥, has a one-
dimensional unstable manifold and the two bifurcated steady-state solutions
are stable in H7 ,. When 1> 1,, y, has a two-dimensional unstable manifold
in H7 . Each of the second pair of bifurcated steady-state solutions is stable
in H3 , and has a one-dimensional unstable manifold in H7 ,.

This additionally confirms the trends observed in the four-mode
truncation model in Section 3.

5. HOPF BIFURCATION

In previous sections, we gave an analysis and numerical experiments
on pitchfork bifurcation and stability for bifurcated solutions of Eq. (19) in
the special invariant subspaces H; ,. In order to provide more evidence for
the fluid motion outside these invariant spaces, we shall take k=2 as an
example and study the long-time behavior of the Navier—Stokes flow in the
subspace #; , instead of H},. #}, is also a flow-invariant subspace.

Lemma 5.1. For every A>0 and every initial state y,e #; ,, Egs.
(5) and (6) admit a unique global solution ¥ € C([0, c0); #; ,).

This lemma is deduced in completely the same way as Lemma 2.1.
Thus we reduce Egs. (5)-(6) in #°7 ,:

W+ B0)=0. W=yt xt, (24

We shall find that the steady-state solution —(1/2) cos 2y will lose stability,
Hopf bifurcation arises for this equation, and the bifurcated time-
dependent periodic solution is likely stable in #7 , when A varies.

We recall the operator —4 +1A4,= —A+ 24" 'sin2y(4+4)0,, the
Fréchet derivative of the operator —A4 + AB, ; at (—1/2) cos 2y. As is well
known (see, for example, refs. 7 and 15), Hopf bifurcation is essentially
based on the existence of a simple pair of conjugate eigenvalues of
— A4+ JA, crossing the imaginary line as A increases. This reads as follows:

Lemma 5.2. For 1>0, the operator —A4+14, in 47, has a
eigenvalue p(1) with Im p(24) 0 such that for some constants 4, > >0,

Re p(1) <0 when 0<l<d
Re p(4,)=0, Rep(4)>0 when A, <iA<4i,+9
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and furthermore, the operator —4 + 14, in #;, with /1 has no eigen-
value p satisfying Re p <0.

Here, without loss of generality, we have supposed that #;, are
complex spaces.

For the special case k=2, a similar result in the whole space was
obtained by Liu (see, for example, ref. 13). However, we shall provide an
alternative and simpler approach for this lemma by following ref. 3, where
we examined time-dependent periodic solutions to Eqs. (1)-(2) with & an
even number.

Proof. First, from Corollary 2.2 we see that the spectral problem
— Ay + Ay = py in #;, (Rep<4) (25)

has no eigenfunction in the form y=3%7_ , ¢, cos(2mix+ 2ny) for /=0,

n=

mz=0Q and Re p <0. As in the proof of Lemma 2.2, an eigenfunction ¥ to
this spectral problem can be supposed in the following form:

Y= Z £, cos{Ix 4+ 2ny + y), (=20

H= - s

Thus Eq. (25) with this eigenfunction becomes

\ . .
}"al.mflL.l,m—l_A'a/.m+lél.m+l

25/. m 2ﬁl "

for any integer m, where

+(/§I.m—p)él,m=o (26)

o=+ C2m+1Y  and &, =l +2m+1)>—4)

The assertion in the case /=0 follows immediately from Eq. (26).
Proceeding to the remaining case /> 1, we also set

2 a .
al, " é/. "y &% AmCL —m

mz=0; Froom= mz=1l (27)

Yem=7

LI Ié.l‘ m— 1 - mC_l_ 1 —m

Thus we see that Eq. (26) is equivalent to the following system of algebraic
equations:

2rm=p)Bru 1
——ﬂ_l.lA_pﬁL_"i-T—:ylm-l-l for ’7120
)“al_ m Yi.m )

2(51 rm_p)ﬁ{ ~

. for m>1
)..(x,‘ —m

+)’I. —nr - 1= 4
Tto-m
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This together with the boundedness of §, .,, from the fact € H* implies

—1
)A'l, m= 5 ) N for m ?O
2(ﬂ/.m_p)ﬁl.m 1
A&/.m 2(ﬁl.m+l_p)ﬁ/.m+l+l
’1&'/. m+1
R |
Yim=73 3 , for m<g —1
z(ﬂ/.m_p)ﬁl.m 1
~ +— =
)“al.m 2(ﬂl.m—l_p)ﬁl.m—l 1
” +-
A'(x/.lll—l .

Thus if (¢, p) is a solution to the spectral problem (25), the eigenfunctions
Y form a one-dimensional space, since Eq. (27) gives for an arbitrary
constant ¢

f./, 0=C. 5/. imzc

On the other hand, /?,. - =/§,. i _mand &, ,, =4, _,_,, for m>=0 yield
P.0=—7, _1. and Eq. (27) gives §, ,=1/$, _;. Hence §, ,=1{, and so Eq.
(25) becomes

—1
2ﬁl.()(ﬁ/.()—ﬂ)+ 1
Vi 28, —p) B 4 1

28, 2B2=p)fis L
A4, - -

If />2 and Re p <4, the real part of the left-hand side of this equation is
negative. Therefore we need only consider the case /=1, that is,

2(2-p) !
7 28(Bi—p) i
A zﬂz(ﬂz_p)_i_l

=1 (28)

with

ﬁn=ﬁl.n and an=&l.n

8I2R6 1222
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Second, to show the existence of the eigenvalue p with Re p <2, we
multiply Eq. (28) by A to obtain

1

“TReb =2, 1
o, 42 ﬁz(zﬁz—zp)+1

oy )

-4

=—2p (29)

Let
pu=—2Rep, v=—=2Imp
@, (u,v)=(Re ¥ (u, v), Im ¥,(u, v))

where ¥,(u, v) denotes the left-hand side of Eq. (29). This equation is
solved when a suitable value is found for (g, v) = (u{1), w(1)) a fixed point
of @,.

From Eq. (29) it follows that Re ¥,(u, v) > —4 and

o, A2

B2, +u)

forall u> —4, ve R, and 1> 0. Hence for K=4+ 1+ 1%

|, v)+4| <A+ <A+ A2 (30)

D,:[—4, 0)xR-[—-4,K]x[—-K K]

That is, @, maps [ —4, K] x[ —K, K] into itself. Note that &,(u, v) is
continuous with respect to (g, v, ). By the Brouwer fixed-point theorem
(see, for example, ref. 16), @, admits a fixed point (u(4), i)y e[ —4, K] x
[ —K, K]. We can make a suitable choice for the fixed points of @, to
ensure the continuity of u(4) and v(4).

Finally, it remains to prove that u(l) crosses the zero point. Let us
suppose, on the contrary, —4 <u(1) <0 for all 1>0. By Eq. (30),

Y.(u(A), v(d))» —4<0 as A-—0

In order to prove ¥ X(,u(/i), v(i))>0 for some 1>0, we introduce the
following.

Lemma 5.3. Let (u(4),v(1)) be the fixed point of &, with
—4 <u(1)<0. Then |v(1)} <24 for all 1> 0.

The proof of this lemma will be shown at the end of this section.
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Without loss of generality, by this lemma we can suppose that
— v, as Ao (31)

for some constant v,. Setting real functions 4 =h(1) and g = g(1) such that
for (i, v) = (u(4), v(2)),

o B(2Br+u+iv) A
h+1ig= -
oy B20:+p +iv) 1
azd Ba(2Bs+p+iv) 1
a4}. "
we have
2 2 2 7—4 ;
nays PPt i) BB =) 5,y (32)
(X_,_ az
and, by Eq. (28),
44p+iv 1 ,
- + - =1
A 5(20 + u + iv) 1
34 h+ig
A
and thus
h+ig 1
A S(20+u+iv) 1
— + -
3 44pu+iv
A
Since
z+L7ré0 forall ceR
3 c+1

. h{Ad) . gd) <5v(, 1 )"
Jim 0. Jlm ==={3 (33)
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On the other hand, it follows from Eq. (29) that

1

Htd=Re s T 1
342 h+ig
B 1
- (5v(113+g3)_ >2
(204p), b 322 £
2 /2 2 , , 5(20 /2 2
31 "+ g (1 g%) ( +,u)(7z +g )+h>
32
1
2 i il 9
5(20+,u)+ h +<5v(h‘+g‘)_ >' 1
322 h+g? 322 hh?+g?)
B 1
U5(20+u)  /SvN?, 1 /5vg )2
372 +<3)ﬁ> h+h<3/13 1
1
by Eq. (32)

>
735 /5v\? 1 /Svg 2
F+<3?> ”+s“z<ﬁ'1>

which, by making use of Eqgs. (31) and (33) and setting 1 — oo, tends to

Svg o 8(4) )’2
52(3 Jim ==

Svp -2 :
. )\
=52< 3 5v, | 1> =52<2"(—V3‘:+—’+1> >13

3 y+1

This implies that there exists a constant 4> 0 such that x(1) > 9. This leads
to a contradiction, and implies the existence of the desired positive con-
stants A, and 6. The proof is complete.

Now we proceed to the proof of Lemma 5.3.
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Proof of Lemma 5.3. For n>=0 and 1>0, we set

d(A)=— !
T BB+ D+ M) 1
a'u-+-l2'
which gives, for 1 >0,
o, A p
d(A)]| < - < 0 - 34
Sy FeT P A
and
B4 1
Imd,  (A)= ) +Imd,,(/1)
and so
[v(4)] 1
I )| = — . =
Imd, , (2)| 1 md, ()] nz0 (35)

On the contrary, we suppose that the assertion of the lemma is not
valid. Then there is a positive value 1’ such that |v(1'}] > 21", By Eq. (28),
dy(A') =1, This together with Eq. (35) implies |d,{A")| =1 for all n>0. This
contradicts Eq. (34). The proof is complete.

Based on Lemma 5.2, we now follow the study in the preceding section
to provide an 18-mode truncation model for Eq. (24) and give computa-
tional result for the bifurcated time-dependent periodic solution, which
seems stable in #°7 , for all .

As in the derivation of Eq. (22), we see that for every

Y= Z &, (1) cos 2ny + Z Z W (1) COS(2mMX — X 4+ 2ny + y)

n=1 m=1 n=— =

s .

+ Z Z CIIL n( t) COS(me + zny)
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the solution of Eq. (24) can be adequately approximated by a function in
the form

N N
Y Et)cos2ny+ Yy (1) cos(x+2ny+ y)
n=1 n=-~N-—1

N
+ Y {1 cos(2x +2ny)

n=-—N

since the proof of Lemma 5.2 shows that #,, , have limit symmetry with
respect to »,, _,_, for n>0. From numerical experiments we find that &,,
#i ., and 5, _,_, are of order 10="~"' and {, , is of order 10"~2 for
n>=0. Set N=3, and set

bj=4>  b,=1+Q2(n~8)+1)}, b,=4+4m—15)*

;= cos 2jy, Y, =cos(x +2ny + v), ¥,, =cos(2x + 2ny)

for 1<j<3,4<n<1], and 12<m < 18. The Navier-Stokes flow is trun-
cated to the form ¢ =Y | X,¢.. Following the procedure for producing
the 17-mode truncation model, we thus project Eq. (24) onto the 18-dimen-
sional space span{y, | i=1,.., 18} to obtain the following 18-mode trunca-
tion model:

0*§£l//+§le//+k|//,

i=1 i=1

S ki noop _p 3 b —b
= —Il< Z —L—“;jX:|X77~i+2 Z u!X"IXIYl />|///

j=1 2 n=4 4 bj m=124+j bf
J klj '"</b,—b, U b—b, .
+ 2 (z b +j‘X/’\,u-k/l//n Z . b AIX/‘XII—/"//">
i=1 n=4 n n=44+j "
S k[(zn (bm m n)
+Y X g Xo Xy,
m=12 4<n.m-n<ll n
3 . 18 b'_bln j & b,— blll
+ Z kl]( Z —JTHXinrl+jlpm_ Z —j—b—_JXXm /ltbm>
Jj=1 m=12 m m=12+; "
% ki2n—m) b,
- Z Z __—_XI"~I1XH¢HI

2b

m=12 4<n.m—n<l1l nr
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Fig. 5. The (X, X;) phase portraits of the limit cycle solution derived from the 18-mode
truncation model for (a) Reynolds number A =50 and (b) Reynolds number A = 200.

for k=2 and /=1, which is rewritten as the system of ordinary differential
equations

dX
—{—=3°_,.,\,J(X), X=(X|,..., XlS)’ 1=1, k=2

Using the four-step Adams-Bashforth method with step length
h=0.0002 and A=50 or 200 again to discretize this set of coupled equa-
tions, we find a periodic equation, the phase portraits of which on the
(Xg, X;) plane are displayed in Fig. 5. From this computation it seems
valid that Eq. (24) has a unique Hopf bifurcation value and the bifurcated
time-dependent periodic solution is stable as A increases.

6. REMARKS

We have examined steady-state solutions in H; , and time-dependent
periodic solutions in J#7 , for the Navier-Stokes equations (5)—(6), respec-
tively. However, the subspaces A}, and 7, are also invariant with
respect to Egs. (5)—(6). It is readily seen that all analysis and computation
results on H?, and J#7 , replaced respectively by the spaces A7, and #;,
are remain valid.

Thus, when k=2, H? has the flow-invariant subspaces H;,, A} ,,
H3,, and #}, for [>0. The steady-state solution = —(1/2) cos 2y is
always stable for Egs. (5)-(6) reduced in these subspaces when /# 1.
Pitchfork bifurcation phenomena arise in H?, and H7 ,, respectively,

2

whereas Hopf bifurcation phenomena arise in #; , and #7 ,, respectively.
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Therefore we can especially give the conclusion for the case k=2.
Denoting by 4, the pitchfork bifurcation value and by Ay, the Hopf bifurca-
tion value for Eqgs. (5)~(6) with k=2, we have 0 <1,< 1, <50 by com-
putation. When 1< 4,, the steady-state solution y, is globally attractive in
H?* When A,<A<Zy. ¥, has a one-dimensional unstable manifold in
H; , (resp. H7 ,), which now contains a pair of stable steady-state solu-
tions for Eqgs. (5)~(6) with k=2 reduced in H7 , (resp. Fl'f ). When
A> 4y, two time-dependent periodic solutions arise respectively in A3,
and #7 , such that one is stable in #7 , and the other is stable in J#7 ,.

Consequently, any solution of Eqs. (5) —(6)withk=2and A>0 startmg
from either the mode cos(mx+ ny) or the mode sin(mx+ny) in H? is
attracted by one of the five steady-state solutions or one of the two periodic
solutions. Here m and » are arbitrary integers.
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